Exercise 26

Solve the boundary-value problem, if possible.

$$y'' + 6y' = 0$$
, $y(0) = 1$, $y(1) = 0$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y = e^{rx}$.

$$y = e^{rx} \rightarrow y' = re^{rx} \rightarrow y'' = r^2 e^{rx}$$

Plug these formulas into the ODE.

$$r^2e^{rx} + 6(re^{rx}) = 0$$

Divide both sides by e^{rx} .

$$r^2 + 6r = 0$$

Solve for r.

$$r(r+6) = 0$$

$$r = \{-6, 0\}$$

Two solutions to the ODE are e^{-6x} and $e^0 = 1$. By the principle of superposition, then,

$$y(x) = C_1 e^{-6x} + C_2.$$

Apply the boundary conditions to determine C_1 and C_2 .

$$y(0) = C_1 + C_2 = 1$$

$$y(1) = C_1 e^{-6} + C_2 = 0$$

Solving this system of equations yields $C_1 = e^6/(e^6 - 1)$ and $C_2 = 1/(1 - e^6)$. Therefore, the solution to the boundary value problem is

$$y(x) = \frac{e^6}{e^6 - 1}e^{-6x} + \frac{1}{1 - e^6}$$
$$= \frac{e^{6(1-x)}}{e^6 - 1} + \frac{1}{1 - e^6}$$
$$= \frac{e^{6(1-x)} - 1}{e^6 - 1}.$$

Below is a graph of y(x) versus x.

